

Alliage Base Nickel PER263

DÉSIGNATIONS

Normes européennes :

- Symbolique : NiCrCo20Mo

WL : 2.4650 UNS : N07263

BS : HR10 / 206 /404

COMPOSITION

Carbone	0,05
Cobalt	20,00
Chrome	19,50
Molybdène	5,80
Titane	2,20
Fer	≤0,70
Nickel	Base

PROPRIÉTÉS MÉCANIQUES TYPIQUES—

Sur métal livré prêt à l'emploi :

• Traction à température ambiante :

- Résistance : 970 N/mm²
 - Limite d'élasticité à 0,2 % : 580 N/mm²
 - Allongement sur 5d : 39 %

• Traction rapide à température :

Température en °C	Résistance en (N/mm²)	Limite d'élasticité à 0.2 % (N/mm²)	Allongement (5d) %
200	920	540	-
400	850	510	-
500	810	490	42
600	780	480	34
800	500	340	22
1000	120	80	31

APPLICATIONS -

- Industries Aéronautique et Spatiale.
- Turbines à gaz.

PROPRIÉTÉS D'EMPLOI

Superalliage base Nickel à durcissement structural présentant:

• Excellente résistance à l'oxydation à chaud.

TRAITEMENT THERMIQUE _____

Mise en solution + Vieillissement
 1150 °C/ Eau + 800 °C/ refroidissement air

PROPRIÉTÉS PHYSIQUES _____

• Densité :

- à 20 °C : 8,40 - à 400 °C : 8,30 - à 800 °C : 8,15

• Coefficient moyen de dilatation en m/m. °C :

- entre 20 °C et 200 °C : 12,0 x 10⁻⁶ - entre 20 °C et 400 °C : 13,1 x 10⁻⁶ - entre 20 °C et 600 °C : 14,3 x 10⁻⁶ - entre 20 °C et 800 °C : 16,1 x 10⁻⁶

• Module d'élasticité en N/mm² :

 - à 20 °C :
 $222x 10^3$

 - à 200 °C :
 213×10^3

 - à 400 °C :
 $198x 10^3$

 - à 600 °C :
 184×10^3

 - à 800 °C :
 175×10^3

• Conductivité thermique en W.m/m². °C :

- à 20 °C : 11,5 - à 200 °C : 14,5 - à 400 °C : 18,0 - à 600 °C : 21,5 - à 800 °C : 25,0 - à 1000 °C : 28,5

• Capacité thermique massique en J/g.°C:

- à 20°C: 0.46

FORGEAGE _____

• 1170/920 °C

Contact:

www.aubertduval.com

Les informations qui figurent sur le présent document constituent des valeurs typiques ou moyennes et non des valeurs maximales ou minimales garanties. Les applications indiquées pour les nuances décrites ne le sont qu'à titre indicatif afin d'aider le lecteur dans son évaluation personnelle et ne sont pas des garanties, implicites ou explicites, d'adéquation à un besoin spécifique. La responsabilité d'Aubert & Duval ne pourra en aucun cas être étendue au choix du produit ou aux conséquences de ce choix..

