

Stellar ABD®-900AM

Powder for Additive Manufacturing

MATERIAL OVERVIEW

- An age-hardenable nickel-based superalloy designed specifically for use as feedstock in powder bed fusion.
 Stellar ABD®-900AM is optimized for high creep and tensile strength, and corrosion/oxidation resistance, with a working temperature range up to 900°C in its age-hardened state.
- The new alloy has excellent creep strength similar to alloy 939 and Ni 738 – while having superior resistance to cracking during manufacture and heat treatment.

Designed to be free of solidification, liquidation and strain-age cracks, Stellar ABD®-900AM is 40% γ phase and showcases exceptional printability for such a high temperature strengthened alloy. It is suitable for complex components within the Aerospace, Power, Automotive and Space industries.

KEY PROPERTIES

Mechanical ^{1,2} (900°C)	Yield strength (MPa)	z 574 xy 568
	Ultimate tensile strength (MPa)	z 582 xy 593
	Elongation at failure %	z 13 xy 7
	Area reduction at failure %	z 12 xy 7
Thermo- physical ³ (25-1200°C)	Thermal conductivity (W(m°C) ⁻¹)	11.0 - 30.1
	CTE (Linear)/x10-6°C ⁻¹	11.4 - 19.2
Physical ⁴	Density/ g cm ⁻³	8.395
	Melting range ² / °C	1305-1380

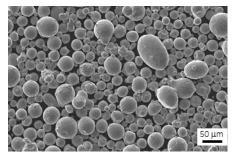
All measurements are for the fully heat treated alloy printed with a layer thickness of 30 $\mu m. \,$

 $^1 strain$ rate of $10^{-3} s^{-1},\,^2 after$ recrystallisation anneal and full heat treatment, $^3 after$ full heat treatment, $^4 as$ -printed

PRINTABILITY

Stellar ABD®-900AM shows high part density of >99.9% and no cracking when printed with standard Ni 718 parameters.

POWDER CHARACTERISTICS


Particle size distributions:

Laser Powder Bed Fusion (LPBF): 15-53 µm

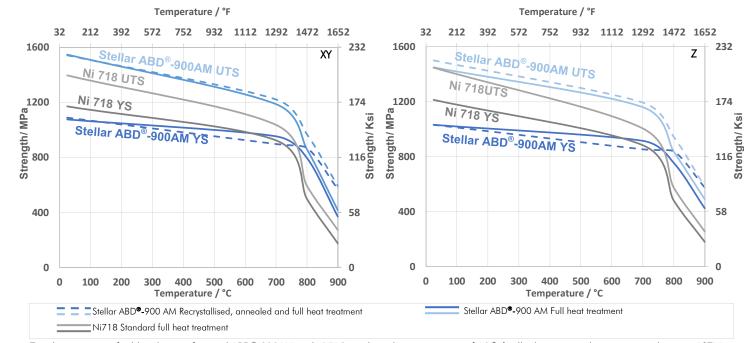
Electron Beam Melting (EBM): 45-106 μm

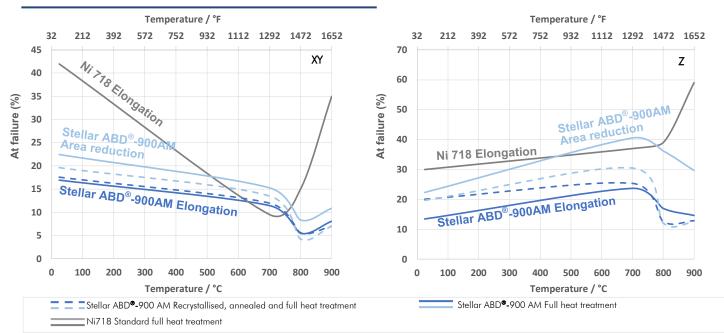
Directed Energy Deposition (DED): 45-106 μm

Custom size distributions available on request

Stellar ABD®-900AM is well suited for gas atomisation

Stellar ABD®-900AM is available in batch sizes suitable for R&T and full production.


Contact: powder@aubertduval.com www.aubertduval.com

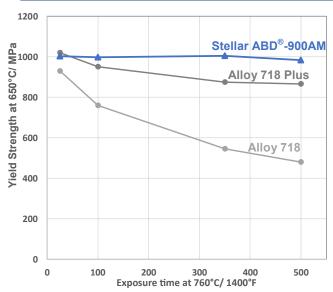

Stellar ABD®-900AM

TENSILE PROPERTIES

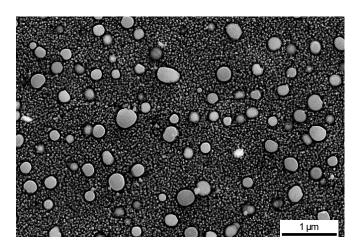
Tensile properties of additively manufactured ABD®-900AM and Ni718, evaluated at a strain rate of 10⁻³s⁻¹, all other test conditions in accordance to ASTM E8/E8M-16a/E21. No HIP applied. Yield Strength (YS) shown is Rp_{0.2%} stress, Ultimate Tensile Strength (UTS) is stress at maximum force.

TENSILE DUCTILITY & REDUCTION OF AREA

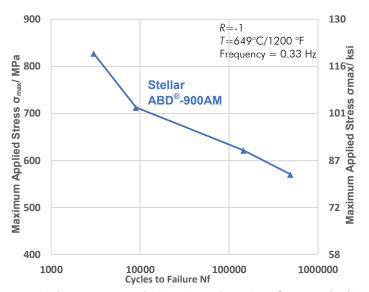
Tensile properties of additively manufactured Stellar ABD®-900AM and Ni718, evaluated at a strain rate of 10⁻³ s⁻¹, all other test conditions in accordance to ASTM E8/E8M-16a/E21. No HIP applied. Elongation and Area Reduction were measured after failure as per the standards.


Contact: powder@aubertduval.com

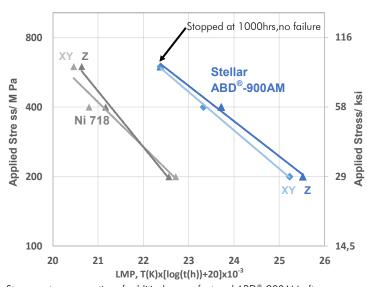
www.aubertduval.com



LONG TERM STABILITY



Tensile properties of additively manufactured ABD®-900AM after full heat treatment cycle followed by long term heat exposure. Yield strength evaluated at 650 °C with a strain rate of $10^{-4}\,\mathrm{s}^{-1}$. Data for Alloy 718 and Alloy 718Plus taken from "Advanced Materials and Processes, December 2006"

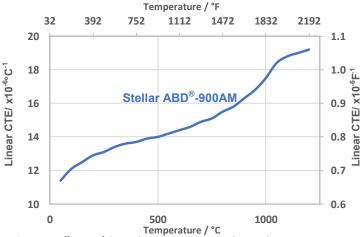

SEM image of fully heat-treated ABD®-900AM after electro-chemical etching in 10% phosphoric acid showing the bi-modal γ' -phase distribution: 50 and 200 nm

FATIGUE PROPERTIES

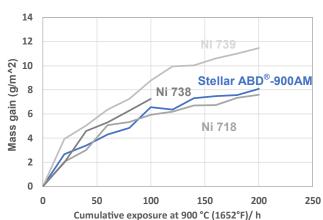
Low cycle fatigue properties of additively manufactured ABD $^{\circ}$ -900AM after full heat treatment cycle. Tested in accordance to ASTM E606.

STRESS RUPTURE PROPERTIES

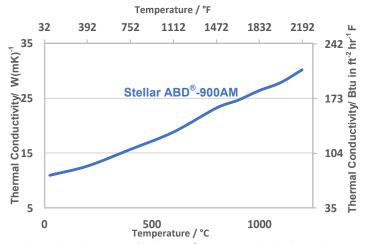
Stress rupture properties of additively manufactured ABD®-900AM after recrystallisation anneal and full heat treatment cycle. Tested in accordance to ASTM E139. Larson-Miller Parameter evaluated with Temperature (T) in Kelvin and Time (t) in hours. Ni718 is additively manufactured and fully heat treated.

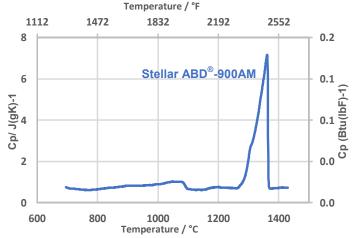

Contact: powder@aubertduval.com www.aubertduval.com

field Strength at 1400°F/ ksi

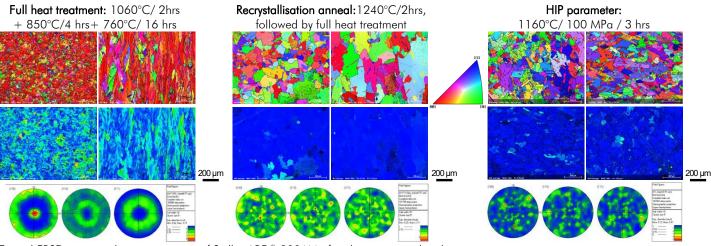


THERMOPHYSICAL PROPERTIES




Linear coefficient of thermal expansion measured according to ASTM E228. Average of heating and cooling curves.

Mass gain of Stellar ABD®-900AM and other alloys during the course of cyclic oxidation in laboratory air over 200 hrs.1


Thermal conductivity (A) of Stellar ABD®-900AM is calculated according to ASTM standards from measured values of density (p), specific heat capacity (Cp), and thermal diffusivity (a): $\lambda = \rho$ Cpa.

Specific heat (Cp) of Stellar ABD®-900AM, measured according to ASTM E1269.2

¹Stellar ABD®-900AM after full heat treatment, ²Stellar ABD®-900AM in an as-printed condition

MICROSTRUCTURE & HEAT TREATMENT

Typical EBSD maps and grain structures of Stellar ABD®-900AM after the corresponding heat treatments.

Contact: powder@aubertduval.com / www.aubertduval.com